Strong approximations for resample quantile processes and application to ROC methodology
نویسندگان
چکیده
Abstract The receiver operating characteristic (ROC) curve is defined as true positive rate versus false positive rate obtained by varying a decision threshold criterion. It has been widely used in medical science for its ability to measure the accuracy of diagnostic or prognostic tests. Mathematically speaking, ROC curve is the composition of survival function of one population with the quantile function of another population. In this paper, we study strong approximation for the quantile processes of bootstrap and the Bayesian bootstrap resampling distributions, and use this result to study strong approximations for the empirical ROC estimator, the corresponding bootstrap, and the Bayesian versions in terms of two independent Kiefer processes. The results imply asymptotically accurate coverage probabilities for the confidence bands for the ROC curve and confidence intervals for the area under the curve functional of the ROC constructed using bootstrap and the BB method.
منابع مشابه
Strong Gaussian Approximations of Product-limit and Quantile Processes for Strong Mixing and Censored Data
In this paper, we consider the product-limit quantile estimator of an unknown quantile function under a censored dependent model. This is a parallel problem to the estimation of the unknown distribution function by the product-limit estimator under the same model. Simultaneous strong Gaussian approximations of the product-limit process and product-limit quantile process are constructed with rat...
متن کاملConditional Quantile Processes Based on Series or Many Regressors
Quantile regression (QR) is a principal regression method for analyzing the impact of covariates on outcomes. The impact is described by the conditional quantile function and its functionals. In this paper we develop the nonparametric QR series framework, covering many regressors as a special case, for performing inference on the entire conditional quantile function and its linear functionals. ...
متن کاملThreshold Quantile Autoregressive Models
We study in this article threshold quantile autoregressive processes. In particular we propose estimation and inference of the parameters in nonlinear quantile processes when the threshold parameter defining nonlinearities is known for each quantile, and also when the parameter vector is estimated consistently. We derive the asymptotic properties of the nonlinear threshold quantile autoregressi...
متن کاملFirm Specific Risk and Return: Quantile Regression Application
The present study aims at investigating the relationship between firm specific risk and stock return using cross-sectional quantile regression. In order to study the power of firm specific risk in explaining cross-sectional return, a combination of Fama-Macbeth (1973) model and quantile regression is used. To this aim, a sample of 270 firms listed in Tehran Stock Exchange during 1999-2010 was i...
متن کاملSemi-parametric Quantile Regression for Analysing Continuous Longitudinal Responses
Recently, quantile regression (QR) models are often applied for longitudinal data analysis. When the distribution of responses seems to be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. In this paper, a semi-parametric quantile regression model is developed for analysing continuous longitudinal responses. The error term's distribution is assumed to be Asymmetr...
متن کامل